Implementation of Fuzzy Cognitive Maps with Genetic Algorithms for Predicting Type 2 Diabetes Mellitus
Abstract
Type 2 diabetes mellitus is a chronic non-communicable disease caused by a disorder in glucose metabolism, which results in an abnormal increase in glucose concentration in the blood. The late diagnosis of this disease contributes to the increased worldwide rates of morbidity and mortality. The development of models based on artificial intelligence for the prediction of diabetes could accelerate diagnosis. Therefore, the aim of the present study was to develop a prediction model for type 2 diabetes mellitus based on fuzzy cognitive maps trained with a genetic algorithm. The methodology employed consisted of using a dataset from the National Institute of Diabetes and Digestive and Kidney Diseases PIMA Indian population, which contains demographic and clinical information from 768 patients. For training and validation, 70 % of the data was used and the remaining 30 % was used for performance testing. The fuzzy cognitive map model can predict the disease with 99 % accuracy, 98 % precision, and 100 % recall. It is concluded that the model presents a good ability to predict and evaluate the behavior of the variables of interest in type 2 diabetes mellitus, showing its value as a support tool for the timely identification of the disease and support for decision making by the physician.
References
American Diabetes Association Professional Practice Committee et al., “2. Diagnosis and classification of diabetes: standards of care in diabetes—2024,” Diabetes Care, vol. 47, no. Supplement_1, pp. S20–S42, 2024. https://doi.org/10.2337/dc24-S002
World Health Organization. “Diabetes.” who.int. Accessed: Feb. 1, 2024. [Online.] Available: https://www.who.int/news-room/fact-sheets/detail/diabetes
D. J. Magliano, E. J. Boyko, and IDF Diabetes Atlas 10th edition scientific committee, IDF DIABETES ATLAS, Brussels: International Diabetes Federation, 2021. http://www.ncbi.nlm.nih.gov/books/NBK581934/
C. Bommer et al., “The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study,” Lancet Diabetes Endocrinol., vol. 5, no. 6, pp. 423-430, Jun. 2017. https://doi.org/10.1016/S2213-8587(17)30097-9
J. Zhang et al., “The impact of global, regional, and national population ageing on disability-adjusted life years and deaths associated with diabetes during 1990–2019: A global decomposition analysis,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 17, no 6, p. 102791, Jun. 2023. https://doi.org/10.1016/j.dsx.2023.102791
I. Tasin, T. U. Nabil, S. Islam, and R. Khan, “Diabetes prediction using machine learning and explainable AI techniques,” Healthc. Technol. Lett., vol. 10, no. 1–2, pp. 1–10, Dec. 2023. https://doi.org/10.1049/htl2.12039
J. Abdollahi, and B. Nouri-Moghaddam, “Hybrid stacked ensemble combined with genetic algorithms for diabetes prediction,” Iran J. Comput. Sci., vol. 5, no 3, pp. 205-220, Sep. 2022. https://doi.org/10.1007/s42044-022-00100-1
A. Hennebelle, H. Materwala, and L. Ismail, “HealthEdge: A Machine Learning-Based Smart Healthcare Framework for Prediction of Type 2 Diabetes in an Integrated IoT, Edge, and Cloud Computing System,” Procedia Comput. Sci., vol. 220, pp. 331-338, 2023. https://doi.org/10.1016/j.procs.2023.03.043
T. Mora, D. Roche, and B. Rodríguez-Sánchez, “Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms,” Diabetes Res. Clin. Pract., vol. 204, p. 110910, Oct. 2023. https://doi.org/10.1016/j.diabres.2023.110910
A. Amirkhani, E. I. Papageorgiou, A. Mohseni, and M. R. Mosavi, “A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications,” Comput. Methods Programs Biomed., vol. 142, pp. 129-145, Apr. 2017. https://doi.org/10.1016/j.cmpb.2017.02.021
A. M. Shukla, P. Pandit, V. Purandare, and A. Srinivasaraghavan, “Symptom based Hierarchical Classification of Diabetes and Thyroid disorders using Fuzzy Cognitive Maps,” Cornell University, no. 2, 2021. https://doi.org/10.48550/arXiv.2108.03760
A. Alam, “Fuzzy Cognitive Maps Approach to Identify Risk Factors of Diabetes,” Journal of Physical Sciences, vol. 22, pp. 13-21, 2017. https://vixra.org/pdf/1803.0471v1.pdf
W. Hoyos, K. Hoyos, and R. Ruiz-Pérez, “Modelo de inteligencia artificial para la detección temprana de diabetes,” Biomédica, vol. 43, no. Sp.3, pp. 110-121, Dec. 2023. https://doi.org/10.7705/biomedica.7147
S. Almufti, A. Yahya, and H. Khalid, “A comparative study of particle swarm optimization and genetic algorithm,” International Journal of Electrical Engineering, vol. 9, no. 2, pp. 215–223, 2016. http://www.irphouse.com/ijee16/ijeev9n2_06.pdf
J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, “Using the ADAP learning algorithm to forecast the onset of diabetes mellitus,” Proceedings of the Annual Symposium on Computer Application in Medical Care, p. 261, Nov.1988. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2245318/
UCI Machine Learning, and Kaggle Team “Pima Indians Diabetes Database.” Kaggle.com. Accessed: Feb. 1, 2024. [Online.] Available: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321-357, Jun. 2002. https://doi.org/10.1613/jair.953
B. Kosko, “Fuzzy cognitive maps,” Int. J. Man-Mach. Stud., vol. 24. no. 1, pp. 65-75, Jan. 1986. https://doi.org/10.1016/S0020-7373(86)80040-2
I. D. Apostolopoulos, N. I. Papandrianos, N. D. Papathanasiou, and E. I. Papageorgiou, “Fuzzy Cognitive Map Applications in Medicine over the Last Two Decades: A Review Study,” Bioengineering, vol. 11, no. 2, p. 139, Jan. 2024. https://doi.org/10.3390/bioengineering11020139
W. Hoyos, J. Aguilar, and M. Toro, “A clinical decision-support system for dengue based on fuzzy cognitive maps,” Health Care Manag. Sci., vol. 25, no. 4, pp. 666-681, Dec. 2022. https://doi.org/10.1007/s10729-022-09611-6
B. Alhijawi, and A. Awajan, “Genetic algorithms: theory, genetic operators, solutions, and applications,” Evol. Intell., vol. 17, no. 3 pp. 1245-1256, Feb. 2023. https://doi.org/10.1007/s12065-023-00822-6
S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed. Tools Appl., vol. 80, no. 5, pp. 8091-8126, Feb. 2021. https://doi.org/10.1007/s11042-020-10139-6
A. Choudhary, M. Kumar, M. K. Gupta, D. K. Unune, and M. Mia, “Mathematical modeling and intelligent optimization of submerged arc welding process parameters using hybrid PSO-GA evolutionary algorithms,” Neural Comput. Appl., vol. 32, no. 10, pp. 5761–5774, May. 2020. https://doi.org/10.1007/s00521-019-04404-5
D. Liu, “Mathematical modeling analysis of genetic algorithms under schema theorem,” J. Comput. Methods Sci. Eng., vol. 19, pp. 131-137, Aug. 2019. https://doi.org/10.3233/JCM-191019
H. Wickham, "Toolbox," in ggplot2 Elegant Graphics for Data Analysis, Cham: Springer International Publishing, 2016, ch. 3, Toolbox, pp. 33-74. https://doi.org/10.1007/978-3-319-24277-4
D. H. Seo et al., “Association between age at diagnosis of type 2 diabetes and cardiovascular morbidity and mortality risks: A nationwide population-based study,” Diabetes Res. Clin. Pract., vol. 208, p. 111098, Feb. 2024. https://doi.org/10.1016/j.diabres.2024.111098
J. R. Landis, and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, vol. 33, no. 1, pp. 159-174, Mar. 1977. https://doi.org/10.2307/2529310
S. C. Gupta, and N. Goel, “Predictive Modeling and Analytics for Diabetes using Hyperparameter tuned Machine Learning Techniques,” Procedia Comput. Sci., vol. 218, pp. 1257-1269, 2023. https://doi.org/10.1016/j.procs.2023.01.104
M. E. Febrian, F. X. Ferdinan, G. P. Sendani, K. M. Suryanigrum, and R. Yunanda, “Diabetes prediction using supervised machine learning,” Procedia Comput. Sci., vol. 216, pp. 21-30, 2023. https://doi.org/10.1016/j.procs.2022.12.107
Md. S. Reza, U. Hafsha, R. Amin, R. Yasmin, and S. Ruhi, “Improving SVM performance for type II diabetes prediction with an improved non-linear kernel: Insights from the PIMA dataset,” Comput. Methods Programs Biomed. Update, vol. 4, p. 100118, 2023. https://doi.org/10.1016/j.cmpbup.2023.100118
X. Li, J. Zhang, and F. Safara, “Improving the Accuracy of Diabetes Diagnosis Applications through a Hybrid Feature Selection Algorithm,” Neural Process. Lett., vol. 55, no. 1, pp. 153-169, Feb. 2023. https://doi.org/10.1007/s11063-021-10491-0
C. C. Olisah, L. Smith, and M. Smith, “Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective,” Comput. Methods Programs Biomed., vol. 220, p. 106773, Jun. 2022. https://doi.org/10.1016/j.cmpb.2022.106773
G. Dharmarathne, T. N. Jayasinghe, M. Bogahawaththa, D. P. P. Meddage, and U. Rathnayake, “A novel machine learning approach for diagnosing diabetes with a self-explainable interface,” Healthc. Anal., vol. 5, p. 100301, Jun. 2024. https://doi.org/10.1016/j.health.2024.100301
A-M. Auvinen et al. “Type 1 and type 2 diabetes after gestational diabetes: a 23 year cohort study,” Diabetologia, vol 63, no. 10, pp. 2123–2128, Oct. 2020. https://doi.org/10.1007/s00125-020-05215-3
E. Hanson, I. Ringmets, A. Kirss, M. Laan, and K. Rull, “Screening of gestational diabetes and its risk factors: Pregnancy outcome of women with gestational diabetes risk factors according to glycose tolerance test results,” J. Clin. Med., vol. 11, no. 17, p. 4953, Aug. 2022. https://doi.org/10.3390/jcm11174953
Organización Panamericana de la Salud, “Diagnóstico y manejo de la diabetes de tipo 2,” Ops, pp. 1–38, 2020. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/53007/OPSWNMHNV200043_spa.pdf?sequence=1&isAllowed=y
N. Rachdaoui, “Insulin: The friend and the foe in the development of type 2 diabetes mellitus,” Int. J. Mol. Sci., vol. 21, no. 5, p. 1770, Mar. 2020. https://doi.org/10.3390/IJMS21051770
G. Jia, and J. Sowers, “Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease,” Hypertension, vol. 78, no. 5, pp. 1197–1205, Oct. 2021. https://doi.org/10.1161/HYPERTENSIONAHA.121.17981
M. Das et al., “Determinants of gestational diabetes pedigree function for Pima Indian females,” Intern. Med. - Open J., vol. 6, no. 1, pp. 9–13, Dec. 2022. https://doi.org/10.17140/imoj-6-121
R. D. Joshi, and C. K. Dhakal, “Predicting type 2 diabetes using logistic regression and machine learning approaches,” Int. J. Environ. Res. Public Health, vol. 18, no. 14, p. 7346, Jul. 2021. https://doi.org/10.3390/ijerph18147346
R. Birjais, A. K. Mourya, R. Chauhan, and H. Kaur, “Prediction and diagnosis of future diabetes risk: a machine learning approach,” SN Appl. Sci., vol. 1, no. 9, Aug. 2019. https://doi.org/10.1007/s42452-019-1117-9
I. D. Apostolopoulos, P. P. Groumpos, and D. J. Apostolopoulos, “Advanced fuzzy cognitive maps: state-space and rule-based methodology for coronary artery disease detection,” Biomed. Phys. Eng. Express, vol. 7, no. 4, p. 045007, 2021. https://doi.org/10.1088/2057-1976/abfd83
Downloads
Copyright (c) 2024 TecnoLógicas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
| Article metrics | |
|---|---|
| Abstract views | |
| Galley vies | |
| PDF Views | |
| HTML views | |
| Other views | |
Funding data
-
Universidad Cooperativa de Colombia
Grant numbers INV3569





















