Evaluation of a Semi-Continuous Disk-Stack Centrifuge for the Harvest of Tsukamurella Paurometabola C-924 Bacterium
Abstract
The disk stack centrifuge is an equipment widely used in the current biotechnological industry because of the multiple advantages it offers, the most important being its high operational flexibility, robustness, and processing speed. The objective of this research was to evaluate whether a semi-continuous disk stack centrifuge can be used to harvest Tsukamurella paurometabola strain C-924 cells, the active ingredient of the ecological bionematicide HeberNem®, to replace the tubular centrifuges currently used. The methodology used consisted of the development of a type 23 factorial statistical design, in which three input parameters were considered: feed rate [Qalim], wet weight of the diluted cell suspension to be centrifuged [PHalim], and time between discharges [tdesc]. The output parameters considered were wet weight of concentrated biomass [PHbio] and recovery percentage [ %Rec], which must have values greater than 600 g/L and 95 %, respectively, to obtain a corresponding final yield with the quality standards established for this biotechnological product. The results obtained were that the average values for PHbio and %Rec were 657.28 g/L and 97.43 %, respectively, which met the quality standards for this stage. The experimental design was optimized to determine the optimal values for the three input parameters, thus obtaining the following values: 64 L/h for Qalim, 176 g/L for PHalim, and a tdesc of 5 min. The semi-continuous disk stack centrifuge evaluated can be successfully implemented in the harvest step of the HeberNemÒ production process, thus replacing the tubular centrifuges currently employed. The statistical-mathematical programs Statgraphics Centurion® XV.II, Microsoft Excel®, and MATLAB® v7.0.1 were used for data and results processing.
References
M. C. Flickinger, Downstream industrial biotechnology: recovery and purification. New Jersey, U.S.A.: John Wiley & Sons, Inc., 2013. https://www.wiley.com/en-us/Downstream+Industrial+Biotechnology%3A+Recovery+and+Purification-p-9781118131244
R. G. Harrison, P. W. Todd, S. R. Rudge, and D. P. Petrides, Bioseparations science and engineering, 2nd ed. New York, U.S.A.: Oxford University Press, 2015. https://pdfcoffee.com/bioseparations-science-and-e-ngineering-pdf-free.html
Y. Chisti, “Strategies in Downstream Processing”, in Bioseparation and Bioprocessing: A Handbook, vol. 2, G. Subramanian, Ed. New York, U.S.A.: Wiley-VCH, 1998, pp. 3-30. https://doi.org/10.1016/S0734-9750(99)00012-9
W. W.-F. Leung, Centrifugal Separations in Biotechnology, 2nd ed. Oxford, U.K.: Elsevier, 2020. https://doi.org/10.1016/C2017-0-03265-2
Joseph et al., “A Scale-Down Mimic for Mapping the Process Performance of Centrifugation, Depth, and Sterile Filtration”, Biotechnology and Bioengineering, vol. 113, no. 9, pp. 1934-1941, 2016. https://doi.org/10.1002/bit.25967
R. Kempken, A. Preissmann, and W. Berthold, “Assessment of a Disc Stack Centrifuge for Use in Mammalian Cell Separation”, Biotechnology and Bioengineering, vol. 46, no. 2, pp. 132-138, 1995. https://doi.org/10.1002/bit.260460206
P. H. Chlup, D. Bernard, and G. G. Stewart, “Disc Stack Centrifuge Operating Parameters and Their Impact on Yeast Physiology”, Journal of the Institute of Brewing, vol. 114, no. 1, pp. 45-61, 2008. https://doi.org/10.1002/j.2050-0416.2008.tb00305.x
M. Schmidt, R. Krützfeldt, and A. Roß, “Validation of a separator CSA8 regarding sterilization for aseptic processes”, Process Biochemistry, vol. 34, no. 8, pp. 769-776, 1999. https://doi.org/10.1016/S0032-9592(98)00151-4
M. Iammarino, J. Nti-Gyabaah, M. Chandler, D. Roush, and K. Göklen, “Impact of Cell Density and Viability on Primary Clarification of Mammalian Cell Broth”, BioProcess International, vol. 5, pp. 38-50, 2007. https://www.bioprocessintl.com/filtration/impact-of-cell-density-and-viability-on-primary-clarification-of-mammalian-cell-broth
L. K. Shekhawat, J. Sarkar, R. Gupta, S. Hadpe, and A. S. Rathore, “Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics”, Journal of Biotechnology, vol. 267, pp. 1-11, 2018. https://doi.org/10.1016/j.jbiotec.2017.12.016
M. Yang, X. Liu, J. A. Howell, and H. Cheng, “Analysis and estimation/prediction of the disk stack centrifuge separation performance – Scaling from benchtop fixed rotor type to disk stack centrifuges”, Separation Science and Technology, vol. 55, no. 14, pp. 2615-2621, 2019. https://doi.org/10.1080/01496395.2019.1636820
L. Stoffels, A. Finlan, G. Mannall, S. Purton, and B. Parker, “Downstream Processing of Chlamydomonas reinhardtii TN72 for Recombinant Protein Recovery”, Frontiers in Bioengineering and Biotechnology, vol. 7, no. 383, pp. 1-13, 2019. https://doi.org/10.3389/fbioe.2019.00383
P. Esmaeilnejad-Ahranjani and M. Hajimoradi, “Optimization of industrial-scale centrifugal separation of biological products: comparing the performance of tubular and disc stack centrifuges”, Biochemical Engineering Journal, vol. 178, p. 108281, 2022. https://doi.org/10.1016/j.bej.2021.108281
V. Ott et al., “Qualification of a Single-Use Disk Stack Separator for Cell Separation in Mammalian Cell-Based Antibody Production”, Chemie Ingenieur Technik, vol. 94, no. 12, pp. 1-9, 2022. https://doi.org/10.1002/cite.202200096
J. König, N. Janssen, and U. Janoske, “Visualization of the deposition mechanisms in disk stack centrifuges with an acrylic glass bowl top and high-speed image processing”, Separation Science and Technology, vol. 56, no. 3, pp. 640-652, 2021. https://doi.org/10.1080/01496395.2020.1728326
H. Salte, J. M. P. King, F. Baganz, M. Hoare, and N. J. Titchener-Hooker, “A Methodology for Centrifuge Selection for the Separation of High Solids Density Cell Broths by Visualisation of Performance Using Windows of Operation”, Biotechnology and Bioengineering, vol. 95, no. 6, pp. 1218-1227, 2006. https://doi.org/10.1002/bit.21102
M. Marin, J. Mena, R. Franco, E. Pimentel, and I. Sánchez, “Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C-924 and Glomus fasciculatum and Glomus clarum fungi on lettuce microrrizal colonization”, Biotecnología Aplicada, vol. 27, pp. 48-51, 2010. http://scielo.sld.cu/pdf/bta/v27n1/bta05110.pdf
M. M. Bruzos, J. M. Campos, P. C. Chávez, R. M. Valdivia, and E. P. Vázquez, “Interacción de Tsukamurella paurometabola C-924 con Rhizobium leguminosarum biovar phaseoli CFH en el cultivo de frijol”, Acta Agronómica, vol. 62, no. 1, pp. 52-58, 2013. http://www.scielo.org.co/pdf/acag/v62n1/v62n1a08.pdf
M. Marín et al., “Zea mays L. plant growth promotion by Tsukamurella paurometabola strain C-924”, Biotecnología Aplicada, vol. 30, pp. 105-110, 2013. http://scielo.sld.cu/pdf/bta/v30n2/bta04213.pdf
Y. L. Paneque, N. González, L. M. Crespo, J. Zamora, R. M. Segura, and A. Pérez, “Modelo matemático para predecir la estabilidad a temperaturas cercanas al ambiente de la bacteria Brevibacterium celere C-924”, Revista de Investigación, Desarrollo e Innovación, vol. 13, no. 2, pp. 367-379, 2023. https://doi.org/10.19053/20278306.v13.n2.2023.16841
P. F. Stanbury, A. Whitaker, and S. J. Hall, Principles of Fermentation Technology, 3rd ed. Oxford, U.K.: Butterworth-Heinemann, 2017. https://doi.org/10.1016/C2013-0-00186-7
Downloads
Copyright (c) 2025 TecnoLógicas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
| Article metrics | |
|---|---|
| Abstract views | |
| Galley vies | |
| PDF Views | |
| HTML views | |
| Other views | |





















