Entrenamiento Discriminativo Maximizando una Distancia entre Modelos de Clases
Resumen
En este trabajo se presenta una técnica de entrenamiento discriminativo para modelos ocultos de Markov, orientado a la detección de patologías en señales de voz. La técnica busca maximizar el área que encierra la curva ROC (Receiver Operating Characteristic curve) ajustando los parámetros de modelo, empleando como función objetivo la distancia entre las medias de las funciones de densidad de probabilidad subyacentes asociadas a cada clase. Como resultado se obtiene una mejora en el desempeño del sistema de clasificación comparada con diferentes criterios de entrenamiento.
Descargas
| Estadísticas de artículo | |
|---|---|
| Vistas de resúmenes | |
| Vistas de PDF | |
| Descargas de PDF | |
| Vistas de HTML | |
| Otras vistas | |





















