Hacia una IA consciente: el papel de las ciencias de la computación en la sostenibilidad energética, social y ética de la inteligencia artificial
Resumen
La inteligencia artificial ha transformado múltiples sectores, pero su rápido crecimiento trae importantes desafíos energéticos, ambientales, sociales y éticos. Para lograr una verdadera sostenibilidad, las ciencias de la computación deben integrar la optimización técnica, la ética computacional y la gobernanza social. En el ámbito energético, destacan enfoques como el pruning, la quantization, los modelos más pequeños, las infraestructuras verdes y métodos descentralizados como el federated learning, que reducen el consumo y las emisiones. La sostenibilidad social y ética requiere marcos que incorporen transparencia, equidad, valores humanos y métricas contextualizadas para evaluar justicia y explicabilidad. La sostenibilidad de la IA depende de combinar eficiencia energética con responsabilidad social, apoyada en prioridades futuras como métricas sociales, herramientas de auditoría integrales, infraestructuras alineadas con energías renovables y modelos de gobernanza participativa.
Referencias bibliográficas
V. Bolón-Canedo, L. Morán-Fernández, B. Cancela, and A. Alonso-Betanzos, “A review of green artificial intelligence: Towards a more sustainable future,” Neurocomputing, vol. 599, p. 128096, Sep. 2024. https://www.sciencedirect.com/science/article/pii/S0925231224008671
A. Tabbakh, L. Al Amin, M. Islam, G. M. Iqbal Mahmud, I. K. Chowdhury, and M. S. H. Mukta, “Towards sustainable AI: a comprehensive framework for Green AI,” Discov. Sustain., vol. 5, no. 1, Nov. 2024. https://doi.org/10.1007/s43621-024-00641-4
R. Różycki, D. A. Solarska, and G. Waligóra, “Energy-aware machine learning models—A review of recent techniques and perspectives,” Energies, vol. 18, no. 11, p. 2810, May. 2025. https://www.mdpi.com/1996-1073/18/11/2810
B. Li, Y. Jiang, V. Gadepally, and D. Tiwari, “Sprout: Green Generative AI with Carbon-Efficient LLM Inference,” in Proc. 2024 Conf. Empirical Methods in Natural Language Processing (EMNLP), Miami, FL, USA, Nov. 2024, pp. 21799–21813. https://aclanthology.org/2024.emnlp-main.1215/
C. M. Travieso-González, S. Celada-Bernal, A. Lomoschitz, and F. Cabrera-Quintero, “Analysis of variables to determine their influence on renewable energy forecasting using ensemble methods,” Heliyon, vol. 10, no. 9, p. e30002, 2024. https://doi.org/10.1016/j.heliyon.2024.e30002
S. Iftikhar, and S. Davy, “Reducing carbon footprint in AI: A framework for sustainable training of large language models,” in Lecture Notes in Networks and Systems, Cham: Springer Nature Switzerland, 2024, pp. 325–336. https://link.springer.com/chapter/10.1007/978-3-031-73110-5_22
C. Springer, and A. Hasanbeigi, “Data Centers in the AI Era: Energy and Emissions Impacts in the U.S. and Key States,” Global Efficiency Intelligence, 2025. [Online]. Available: https://www.globalefficiencyintel.com/s/GEI-data-centers-report-1152025-clean-E4.pdf
J. Sievers et al., “Federated reinforcement learning for sustainable and cost-efficient energy management,” Energy and AI, vol. 21, p. 100521, Sep. 2025. https://www.sciencedirect.com/science/article/pii/S2666546825000539
D. Thakur, A. Guzzo, G. Fortino, and F. Piccialli, “Green Federated Learning: A New Era of green aware AI,” ACM Comput. Surv., vol. 57, no. 8, pp. 1–36, Mar.2025. https://dl.acm.org/doi/full/10.1145/3718363
N. Osman and M. d’Inverno, “A Computational Framework for Human Values,” in Proc. 23rd Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May. 6–10, 2024, pp. 1531–1539. https://research.gold.ac.uk/id/eprint/37360/
P. Radanliev, “AI ethics: Integrating transparency, fairness, and privacy in AI development,” Appl. Artif. Intell., vol. 39, no. 1, Feb. 2025. https://doi.org/10.1080/08839514.2025.2463722
L. Deck, J. Schoeffer, M. De-Arteaga, and N. Kühl, “A Critical Survey on Fairness Benefits of Explainable AI,” in Proc. ACM Conf. on Fairness, Accountability, and Transparency (FAccT ’24), Rio de Janeiro, Brazil, Jun. 3–6, 2024, pp. 1579–1595. https://facctconference.org/static/papers24/facct24-105.pdf
S. Gowaikar, H. Berard, R. Mushkani, and S. Koseki, “From Efficiency to Equity: Measuring Fairness in Preference Learning,” 2024, arXiv:2410.18841. https://arxiv.org/abs/2410.18841
A. González, J. Castaño, X. Franch, and S. Martínez-Fernández, “Impact of ML optimization tactics on greener pre-trained ML models,” Computing, vol. 107, no. 4, p. 103, Apr. 2025. https://doi.org/10.1007/s00607-025-01437-8
V. Mishra, D. Saxena, K. Gupta, S. Patni, and A. K. Singh, “Sustainability in large language model supply chains-insights and recommendations using analysis of utility for affecting factors,” Sci. Rep., vol. 15, no. 1, p. 33524, Sep. 2025. https://www.nature.com/articles/s41598-025-17937-8
Descargas
Derechos de autor 2025 TecnoLógicas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
| Estadísticas de artículo | |
|---|---|
| Vistas de resúmenes | |
| Vistas de PDF | |
| Descargas de PDF | |
| Vistas de HTML | |
| Otras vistas | |





















