Desarrollo de un modelo de simulación basado en dinámica de sistemas para la gestión de agua potable en Paimadó–Río Quito
Resumen
El acceso equitativo al agua potable constituye uno de los desafíos más críticos en comunidades rurales de Colombia, donde las brechas sociales y ambientales limitan la sostenibilidad del recurso. Esta investigación tuvo como objetivo desarrollar un modelo de simulación basado en dinámica de sistemas para evaluar la gestión del acceso al agua potable en la comunidad de Paimadó, municipio de Río Quito. La metodología se fundamentó en la construcción de un modelo conceptual que integró cuatro subsistemas: oferta hídrica, demanda, calidad del agua y costos de acceso, que posteriormente se formalizaron mediante diagramas de niveles y flujos. El horizonte de simulación comprendió el periodo entre 2024 y 2040, en el cual se evaluaron tres escenarios prospectivos (optimista, moderado y pesimista), considerando variaciones en el crecimiento poblacional, la actividad minera y la infraestructura de potabilización. Los resultados mostraron que, en la simulación base, la demanda de agua aumentó de manera sostenida hasta alcanzar 1 031 690 m³/año en 2040, mientras que la oferta presentó una disminución significativa debido al impacto de la minería, lo que generó riesgos de escasez y altos costos para los hogares. En el escenario optimista, con control ambiental y fortalecimiento del sistema de acueducto, se observó cobertura suficiente y reducción del gasto familiar en agua hasta valores cercanos al 0.18 % del ingreso. El escenario moderado reflejó cierta estabilidad inicial, aunque con riesgos de déficit hacia el final del horizonte, mientras que el pesimista evidenció un déficit superior al 50 % de la demanda y un gasto familiar mayor al 33 % del ingreso. Finalmente, se concluye que la dinámica de sistemas constituye una herramienta clave para representar de manera precisa las interacciones entre oferta, demanda, calidad y costos, permitiendo proyectar escenarios y orientar estrategias de gestión que garanticen la sostenibilidad hídrica en comunidades rurales.
Referencias bibliográficas
G. Fernández-Vargas, “La gobernanza del agua como marco integrador para el cumplimiento de los Objetivos de Desarrollo Sostenible en Latinoamérica,” Rev. U.D.C.A Actual. Divulg. Cientif., vol. 23, no. 2, Oct. 2020. https://doi.org/10.31910/rudca.v23.n2.2020.1561
Unesco, “Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019: No dejar a nadie atrás,” Unesdoc Biblioteca Digital, 2019. [Online]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000367304
L. D. Sánchez Torres, and É. Quiroga Rubiano, “Sostenibilidad de las tecnologías de tratamiento de agua para la zona rural,” Revinge., vol. 1, no. 49, pp. 52-61, Jan. 2020. https://doi.org/10.16924/revinge.49.7
L. A. Camacho Botero, “The paradox of the availability of poor water quality in the Colombian rural sector,” Revinge., vol. 1, no. 49, pp. 38-51, Jan. 2020. https://doi.org/10.16924/revinge.49.6
J. O. Moreno Méndez, “Los retos del acceso a agua potable y saneamiento básico de las zonas rurales en Colombia,” Revinge, vol. 1, no. 49, pp. 28-37, Jan. 2020. https://doi.org/10.16924/revinge.49.5
C. J. Mahecha Jaramillo, “Gestión pública frente al suministro de agua en la zona rural de San Antonio del municipio de Jamundí,” Tesis de maestría, Universidad del Valle, Cali, Colombia, 2019. https://hdl.handle.net/10893/14971
Ministerio de Vivienda Ciudad y Territorio, “Informe Nacional de Monitoreo: Sistema General de Participaciones Agua Potable y Saneamiento Básico Vigencia 2024,” minvivienda.gov.co, 2024. [Online]. Available: https://minvivienda.gov.co/sites/default/files/2025-07/informe-nacional-monitoreo-sgp-apsb-2024-09-07-2025.pdf
Alcaldía Municipal de Río Quito en el Chocó, “Acuerdo Nro 010 del 28 de mayo del 2020 Plan De Desarrollo Municipal–2020-2023”, rioquito-choco.gov.co, 2020. [Online]. Available: https://www.rioquito-choco.gov.co/normatividad/plan-de-desarrollo-municipal--20202023
S. Beltrán Castañeda, “Niveles de metales pesados en suelos, sedimentos y peces en el Río Quito, Chocó,” Tesis de grado, Universidad de los Andes, Bogotá, Colombia, 2023. http://hdl.handle.net/1992/67911
Ministerio de Ambiente y Desarrollo Sostenible, “Informes de Gestión Anual,” minambiente.gov.co, 2023. [Online]. Available: https://www.minambiente.gov.co/planeacion-y-seguimiento/informes-de-gestion-anual/
Y. Murillo Hinestroza, and L. Vargas Porras, “Influencia de la minería en las características fisicoquímicas en la parte media y baja del río Quito, Chocó, Colombia,” Rev. Bioetnia, vol. 12, no. 1, pp. 41-51, Dec. 2015. https://doi.org/10.51641/bioetnia.v12i1.157
A. M. Hernández Abadía, E. S. Olaya Escobar, H. F. Castro Silva, and D. R. Olaya Escobar, “Metodología para el desarrollo de capacidades tecnológicas y de innovación para la puesta en marcha de una planta de tratamiento de agua residual doméstica municipal. Caso Tibasosa, Boyacá,” Rev. Bolet. Redipe, vol. 9, no. 10, pp. 75-93, Oct. 2020. https://doi.org/10.36260/rbr.v9i10.1089
D. Y. Becerra-Perenguez, C. P. Acosta-Astaiza, and J. Leyton-Luna, “Gestión del recurso hídrico en la ruralidad, mediante estrategias de fortalecimiento comunitario,” Entramado, vol. 20, no. 1, pp. 1-16, Dec. 2024. https://doi.org/10.18041/1900-3803/entramado.1.10054
S. A. Murillo Montoya, “La conservación del agua en la microcuenca El Burro (Victoria, Caldas), un enfoque participativo,” Rev. Mutis, vol. 14, no. 1, pp. 1-16, Mar. 2024. https://doi.org/10.21789/22561498.2076
ONU, “Informe de los Objetivos de Desarrollo Sostenible 2023: Edición especial,” unstats.un.org, 2023. [Online]. Available: https://unstats.un.org/sdgs/report/2023/
C. Blanco-Moreno, D. Ruiz-Grisales, and M. A. Pérez-Rincón, “Retos y Oportunidades de la Gestión Comunitaria del Agua en la ruralidad de la Cuenca Alta del río Cauca, Colombia, bajo la pandemia del COVID-19,” Prospectiva, no. 34, pp. 223-248, Jul. 2022. https://doi.org/10.25100/prts.v0i34.11923
A. I. Huaico-Malhue, C. P. Santibañez-Orellana, E. del C. Jaque-Castillo, and C. Ojeda-Leal, «Water Scarcity and COVID-19 mortality in rural chilean areas», Urbano, vol. 26, no. 48, pp. 8-19, Nov. 2023. https://doi.org/10.22320/07183607.2023.26.48.01
P. F. Martínez-Austria, and A. Vargas-Hidalgo, “Modelo dinámico adaptativo para la gestión del agua en el medio urbano,” Tecnol. Cien. Agua, vol. 7, no. 4, pp. 139-154, Jul.-Aug. 2016. https://www.scielo.org.mx/scielo.php?pid=S2007-24222016000400139&script=sci_arttext
J. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World. Columbus, USA: Irwin/McGraw-Hill, 2000. https://www.researchgate.net/publication/44827001_Business_Dynamics_System_Thinking_and_Modeling_for_a_Complex_World
W. Xiao-Jun, Z. Jian-Yun, A. Elmahdi, H. E. Rui-Min, Z. Li-Ru, and C. Feng, “Water demand forecasting under changing environment : a system dynamics approach”, in Risk. Water Resour. Manag., Proceed. Symp. H03 IUGG2011, Melbourne, Australia, Jul. 2011, pp. 1-9. [Online]. Available: https://www.researchgate.net/publication/287272027
A. E. Adeniran, “Application of System Dynamics model in the determination of the unit cost of production of drinking water,” Int. J. Water Resour. Environ. Engin., vol. 6, no. 6, pp. 183-192, Jun. 2014. https://doi.org/10.5897/IJWREE2013.0479
G. G. Lemaire, S. A. Carnohan, S. Grand, V. Mazel, P. L. Bjerg, and U. S. McKnight, “Data‐driven system dynamics model for simulating water quantity and quality in peri‐urban streams,” Water, vol. 13, no. 21, p. 3002, Nov. 2021. https://doi.org/10.3390/w13213002
J. Carrillo-Rodríguez, and C. E. Toca Torres, “Hacia un modelo de gestión sostenible del agua en el estado de Tabasco México (Towards a Water Sustainable Management Model in Tabasco Mexico),” SSRN, 2020. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3733727
L. Zuluaga Duque, “Simulador piloto de la oferta y la demanda hídrica en una microcuenca rural para la validación de metodologías y la evaluación de políticas de manejo sostenible del agua,” Trabajo de Maestría, Universidad Nacional de Colombia, Medellín, Colombia, 2011. https://repositorio.unal.edu.co/handle/unal/8785
Y. Tian, C. Li, Y. Yi, X. Wang, and A. Shu, “Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City,” Sustainability, vol. 12, no. 10, p. 4254, May. 2020. https://doi.org/10.3390/su12104254
A. Guemouria et al., “System Dynamics Approach for Water Resources Management: A Case Study from the Souss-Massa Basin,” Water, vol. 15, no. 8, p. 1506, Apr. 2023. https://doi.org/10.3390/w15081506
L. Huang, and L. Yin, “Supply and demand analysis of water resources based on system dynamics model,” J. Engin. Technol. Sci., vol. 49, no. 6, pp. 705-720, Dec. 2017. https://doi.org/10.5614/j.eng.technol.sci.2017.49.6.1
M. N. Filimon, R. Popescu, F. G. Horhat, and O. S. Voia, “Environmental impact of mining activity in Bor area as indicated by the distribution of heavy metals and bacterial population dynamics in sediment», Knowl. Manag. Aquat. Ecosyst., vol. 417, no. 30, 2016. https://doi.org/10.1051/kmae/2016017
H. Gutiérrez-Mosquera, J. Marrugo-Negrete, S. Díez, G. Morales-Mira, L. J. Montoya-Jaramillo, and M. P. Jonathan, “Mercury distribution in different environmental matrices in aquatic systems of abandoned gold mines, Western Colombia: Focus on human health,” J. Hazard. Mater., vol. 404, part A., p. 124080, Feb. 2021. https://doi.org/10.1016/j.jhazmat.2020.124080
T. D. Phan, E. Bertone, and R. A. Stewart, “Critical review of system dynamics modelling applications for water resources planning and management,” Clean. Environ. Syst., vol. 2, p. 100031, Jun. 2021. https://doi.org/10.1016/j.cesys.2021.100031
Y. Tan, Z. Dong, S. M. Guzman, X. Wang, and W. Yan, “Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use,” Hydrol. Earth Syst. Sci., vol. 25, no. 12, pp. 6495-6522, Dec. 2021. https://doi.org/10.5194/hess-25-6495-2021
V. Rueda, M. H. Young, K. Faust, A. Rateb, and B. D. Leibowicz, “System Dynamics Modeling in Local Water Management: Assessing Strategies for the City of Boerne, Texas,” Water, vol. 14, no. 22, Nov. 2022. https://doi.org/10.3390/w14223682
M. Javad Keyhanpour, S. H. Musavi Jahromi, and H. Ebrahimi, “System dynamics model of sustainable water resources management using the Nexus Water-Food-Energy approach”, Ain Shams Engin. J., vol. 12, no. 2, pp. 1267-1281, Jun. 2021. https://doi.org/10.1016/j.asej.2020.07.029
H. E. Martínez Asprilla, and D. J. Salazar Centeno, “Sustentabilidad, transición agroecológica y Plantas útiles en comunidades negras de Rio Quito (Colombia),” Rev. Agroecol., vol. 15, no. 1, Feb. 2022. https://doi.org/10.59187/revistaagroecologia.v15i1.59
N. A. Paipa Rios, and M. A. Triana Gómez, “Estimación del carbono almacenado en la biomasa aérea de un bosque húmedo tropical en Paimadó, Chocó,” Ing. USBMed, vol. 9, no. 1, pp. 18-29, Feb. 2018. https://doi.org/10.21500/20275846.3180
D. Daniel, J. Prawira, T. P. Al Djono, S. Subandriyo, A. Rezagama, and A. Purwanto, “A system dynamics model of the community-based rural drinking water supply program (Pamsimas) in Indonesia,” Water, vol. 13, no. 4, p. 507, Feb. 2021. https://doi.org/10.3390/w13040507
A. Libey, P. Chintalapati, S. Kathuni, B. Amadei, and E. Thomas, “Turn up the Dial: System Dynamics Modeling of Resource Allocations toward Rural Water Supply Maintenance in East Africa,” J. Environ. Eng., vol. 148, no. 4, Jan. 2022. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001982
J. Aracil, and F. Gordillo, Dinámica de sistemas. Madrid, España: Alianza Editorial, 1997.
D. A. Pranedya Baskoro, A. Hermawan, and T. Permadi, “System dynamics model for sustainable water supply strategy in Sentul City area,” JPSL, vol. 11, no. 2, pp. 233-240, Jul. 2021. https://doi.org/10.29244/jpsl.11.2.233-240
M. Huang, X. Li, and J. Wang, “Research on regional water demand prediction of the upper and middle reaches of the Pearl River Basin based on system dynamics,” IOP Conf. Ser. Earth Environ. Sci., vol. 784, no. 1, p. 012003, Jun. 2021. https://iopscience.iop.org/article/10.1088/1755-1315/784/1/012003
Ministerio de Vivienda Ciudad y Territorio, “Resolución 0330 de 2017,” minvivienda.go.co, 2017. [Online]. Available: https://www.minvivienda.gov.co/viceministerio-de-agua-y-saneamiento-basico-reglamento-tecnico-sector-reglamento-tecnico-del-sector-de-agua-potable-y-saneamiento-basico-ras
Ideam, “Consulta y Descarga de Datos Hidrometeorológicos,” dhime.idea.gov.co. [Online]. Available: http://dhime.ideam.gov.co/atencionciudadano/
T. Nazarialamdarloo, H. Ali Jamali, B. Nazari, M. Mehdi Emamjomeh, and H. Karyab, “A system dynamics approach for water resources management with focusing on domestic water demand,” Environ. Health Eng. Manag., vol. 7, no. 4, pp. 229-235, Sep. 2020, [Online]. Available: http://ehemj.com/article-1-685-en.html
M. Abraham, K. Venugopal, R. Arunkumar, and S. K. Pramada, “Simulation of chain of tanks to augment water supply: a case study from Tamil Nadu,” Aqua Water Infr., Ecosyst. Soc., vol. 71, no. 9, pp. 975-991, Sep. 2022. https://doi.org/10.2166/aqua.2022.038
C. D. Guerrero, D. Herrera-Rodríguez, and G. A. Forero-Buitrago, “Hidrología e hidráulica computacional aplicada al suministro de agua lluvia de la vereda el Tunal en Paipa, Boyacá Colombia,” Ing. Comp., vol. 23, no. 2, pp. e2019502-e2019502, May. 2021. https://doi.org/10.25100/iyc.v23i2.9502
M. Milano, D. Ruelland, A. Dezetter, J. Fabre, S. Ardoin-Bardin, and E. Servat, “Modeling the current and future capacity of water resources to meet water demands in the Ebro basin,” J. Hydrol., vol. 500, pp. 114-126, Sep. 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.07.010
S. Huincho Lapa, F. V. Sinche Crispin, and C. A. Almidón Ortiz, “Gestión dinámica de la escasez de aguas superficiales mediante la metodología de dinámica de sistemas,” Rev. Geog. Am. Central, vol. 2, no. 69, pp. 175-198, Apr. 2022. http://dx.doi.org/10.15359/rgac.69-2.6
W. Sardjono, Harisino, W. Gia Perdana, T. Pudaji, and N. Legowo, “System Dynamics Modeling for Sustainable Water,” Int. J. Recent Technol. Eng., vol. 8, no. 6, pp. 2248-2252, Mar. 2020. https://www.ijrte.org/portfolio-item/E5674018520/
L. Chu, and R. Quentin Grafton, “Dynamic water pricing and the risk adjusted user cost (RAUC),” Water Resour. Econ., vol. 35, p. 100181, Jul. 2021. https://doi.org/10.1016/j.wre.2021.100181
Descargas
Derechos de autor 2025 TecnoLógicas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
| Estadísticas de artículo | |
|---|---|
| Vistas de resúmenes | |
| Vistas de PDF | |
| Descargas de PDF | |
| Vistas de HTML | |
| Otras vistas | |





















